
Lecture 15 - July 3

Object Equality, Inheritance

equals: Person vs. PersonCollector
Design: Cohesion, Single-Choice Principle
SMS: 1st Design Attempt

Announcements/Reminders
• Today’s class: notes template posted
• On-demand extra TA help hours
• WrittenTest1 released
• ProgTest1 result to be released
• ProgTest2 (July 11) be released
+ Guide: Friday (July 4)
+ PracticeTest: Monday (July 7)
+ Review Session: Wednesday (July 9)

• Lab4 to be released next Monday
• Priorities:

+Lab3 solution

=

PE

Exercise: Two Persons are equal if their names and measures are equal

Q1: At Line 6, will there be a NullPointerException if obj == null?

Q2: At Line 6, what if we change it to:
 if(this.getClass() != obj.getClass() || obj == null)

Q3: At Lines 11 & 12 which version of the equals method is called?

Person String
↑ ↑
this. firstName . equals (...);

↓
call String

exercises Version
.

Exercise: PersonCollectors are equal if their arrays of persons are equal

Q: At Line 9 of PersonCollector’s equals method
 which version of the equals method is called?

-> as soorafirst personhis"and othe,"
Y

1. Person

2. PersonCollector

object
3.

4 . String

class PersonCollector &
Person[] persons ;

equals (...) Person
this persons [i]· equals (...) :
& ↳3
PC

↳
version

of

3 Person Personseed.

Testing Equality of Person/PersonCollector in JUnit (1)

Person
fn
ln
w
h

p1
Person
fn
ln
w
h

p2
Person
fn
ln
w
h

p3 p4

* pl · equals(p2) T

FX ** 43 . equals (p4) T
** ↳

D.T.: Person

-

returns *

returnsfull full .

(continued from testPersonCollector)

PersonCollector

persons
nop

pc1

PersonCollector

persons
nop

pc2

Q: How about assertTrue(pc2.equals(pc1))?

Testing Equality of Person/PersonCollector in JUnit (2)

#
&
#
&

Person
fn
ln
w
h

p1

Person
fn
ln
w
h

p3
Person
fn
ln
w
h

(continued from testPersonCollector)
Testing Equality of Person/PersonCollector in JUnit (3)

PersonCollector

persons
nop

pc1

PersonCollector

persons
nop

p2

Person

pc2

PersonCollector

p4

-

S
#

S

PersonCollector

persons
nop

pc1

PersonCollector

persons
nop

pc2

Person
fn
ln
w
h

p1

p3

p2

p4

(continued from testPersonCollector)
Testing Equality of Person/PersonCollector in JUnit (4)

Person

PersonCollector

Person
fn
ln
w
h

Person
fn
ln
w
h Person

fn
ln
w
h
Person
fn
ln
w
h·

#

Inheritance: Motivating Problem Nouns -> classes, attributes, accessors
Verbs -> mutators

1 v

- N2

↑

* 13

Design Principles
commande thing

1 Cohesion -> Unix puseadddoit
↳ Attributes and methods in a

single class should serve the same purpose
be under a unifying theme

not
necessarily

Is

2 . Single Choice Principle but
no more nece

slaya
- ↑
lation

: ↳ A change to be made should be on

No licates A minimum number of places
-as

dep

public class Student {
 private Course[] courses;
 private int noc;

 private int kind;
 private double premiumRate;
 private double discountRate;

 public Student (int kind){
 this.kind = kind;
 }
 ...
}

public double getTuition(){
 double tuition = 0;
 for(int i = 0; i < this.noc; i++){
 tuition += this.courses[i].fee;
 }
 if (this.kind == 1) {
 return tuition * this. premiumRate;
 }
 else if (this.kind == 2) {
 return tuition * this.discountRate;
 }
}

public void register(Course c){
 int MAX = -1;
 if (this.kind == 1) { MAX = 6; }
 else if (this.kind == 2) { MAX = 4; }
 if (this.noc == MAX) { /* Error */ }
 else {
 this.courses[this.noc] = c;
 this.noc ++;
 }
}

First Design Attempt howtog
Simulate bast

00 . amt

R
turS

vs . getTuition() i
urs . getTuition) :

Student vs = new Student(1) :
Student urs = new Student (2)

>
us-i urs-> kind nopp2

public class Student {
 private Course[] courses;
 private int noc;

 private int kind;
 private double premiumRate;
 private double discountRate;

 public Student (int kind){
 this.kind = kind;
 }
 ...
}

public double getTuition(){
 double tuition = 0;
 for(int i = 0; i < this.noc; i++){
 tuition += this.courses[i].fee;
 }
 if (this.kind == 1) {
 return tuition * this. premiumRate;
 }
 else if (this.kind == 2) {
 return tuition * this.discountRate;
 }
}

public void register(Course c){
 int MAX = -1;
 if (this.kind == 1) { MAX = 6; }
 else if (this.kind == 2) { MAX = 4; }
 if (this.noc == MAX) { /* Error */ }
 else {
 this.courses[this.noc] = c;
 this.noc ++;
 }
}

First Design Attempt

Good design?
 Judge by Cohesion

volati,a
be

appliaSadr is only applicable to NRS

public class Student {
 private Course[] courses;
 private int noc;

 private int kind;
 private double premiumRate;
 private double discountRate;

 public Student (int kind){
 this.kind = kind;
 }
 ...
}

public double getTuition(){
 double tuition = 0;
 for(int i = 0; i < this.noc; i++){
 tuition += this.courses[i].fee;
 }
 if (this.kind == 1) {
 return tuition * this. premiumRate;
 }
 else if (this.kind == 2) {
 return tuition * this.discountRate;
 }
}

public void register(Course c){
 int MAX = -1;
 if (this.kind == 1) { MAX = 6; }
 else if (this.kind == 2) { MAX = 4; }
 if (this.noc == MAX) { /* Error */ }
 else {
 this.courses[this.noc] = c;
 this.noc ++;
 }
}

First Design Attempt

Good design?
Judge by Single Choice Principle
- Repeated if-conditions
- A new kind is introduced?
- An existing kind is obselete?

dept

dup
?

